
Managing shoulder injuries and rethinking our approach

Return to Work Matters October, 2019

Background

- Shoulder pain is common
- Imaging equates to diagnosis
- Interventional treatment is common
- Outcomes are poor

Jeff

- 65M presents with R shoulder pain
- Job: Communications technician
- MOI: Lifting manhole cover at work 35kg with key
- Initial management BIBA to ED, x-ray NAD, opioids

Jeff

- 2/7 Post injury
 - Med Hx HTN, pAF, L shoulder rotator cuff repair
 - Hx weakness, night pain, overhead pain
 - Examination; DROM, / +ve empty can, Hawkins, lift off
 - Rx analgesia + physiotherapy
- Review at 48 hours;
 - Continues to experience pain ++ no improvement ROM
 - Referred for MRA partial supraspinatus tear
- Referred to Orthopaedic surgeon for an RCT repair

Impact of shoulder pain

Common problem

- 3rd most common reason for seeking health care treatment for MSK pain in the US
- Top 5 of MSK disorders in workers compensation claims in US
- 40-50% chronic

Australian Workcover Claims

Table 27: Number of serious claims by bodily location of injury or disease, 2000–01 and 2011-12 to 2016-17p

Bodily location of injury or disease	2000-01	2011-12	2012-13	2013-14	2014-15	2015-16	% chg	2016-17p
Upper limbs	43,045	42,950	40,520	38,695	38,440	37,610	-13%	37,535
Hand, fingers and	17,625	15,335	14,565	13,940	14,290	14,230	-19%	14,585
Shoulder	10,650	13,680	12,925	12,445	11,960	11,430	7%	11,155
Wrist	6,115	6,005	5,625	5,310	5,160	4,980	-19%	4,955
Elbow	3,110	3,135	2,970	2,790	2,780	2,575	-17%	2,660
Forearm	2,165	2,005	1,835	1,580	1,625	1,635	-24%	1,545
Upper arm	1,145	1,145	1,060	1,065	1,040	1,075	-6%	1,040
Trunk	42,590	34,665	31,670	29,485	27,770	26,315	-38%	25,215
Back - upper or lower	35,260	28,290	25,860	24,115	22,655	21,320	-40%	20,215
Abdomen and pelvic region	4,745	4,105	3,645	3,360	3,195	3,070	-35%	2,980
Chest (thorax)	2,350	2,035	1,950	1,775	1,705	1,680	-29%	1,850
Lower limbs	26,345	28,050	26,565	25,810	25,285	24,685	-6%	25,020
Knee	10,460	12,005	11,390	11,090	10,980	10,380	-1%	10,210
Ankle	5,915	6,210	5,855	5,635	5,560	5,455	-8%	5,785
Foot and toes	4,545	4,280	4,020	3,950	3,840	3,810	-16%	3,860
Lower leg	2,245	2,710	2,490	2,430	2,275	2,260	1%	2,350
Upper leg	1,015	1,020	950	920	840	940	-7%	930
Hip	780	915	940	880	855	855	10%	860

and % serious claims by mechanism and body part

Mechanism of injury or disease Bodily location of injury or disease	Number	Percentage
Body stressing	40,330	38.0%
Back - upper or lower	15.275	37.9%
Shoulder	7,325	18.2%
Knee	3,570	8.9%
Abdomen and pelvic region	2,400	5.9%
Wrist	2,060	5.1%
Hand, fingers and thumb	1,485	3.7%
Elbow	1,315	3.3%
Neck	1,055	2.6%

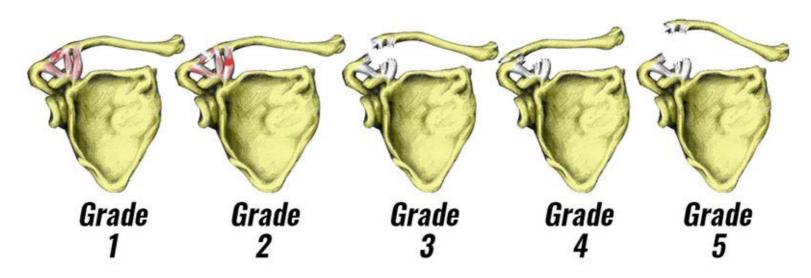
Vehicle incidents and other	6,850	6.4%
Back - upper or lower	1.060	15.5%
Shoulder	710	10.4%
Hand, fingers and thumb	680	9.9%

What happens currently?

- Rapid ultrasound
- Anatomical diagnosis
- Steroid
- Allied health
- Specialist review
- Surgery

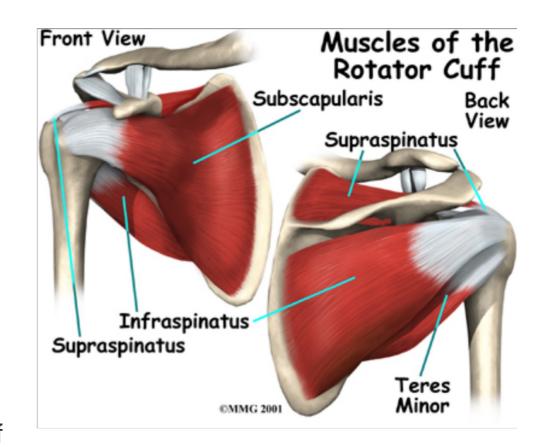
History

- Demographics
- Medical history
- Presenting event


Mechanism of Injury

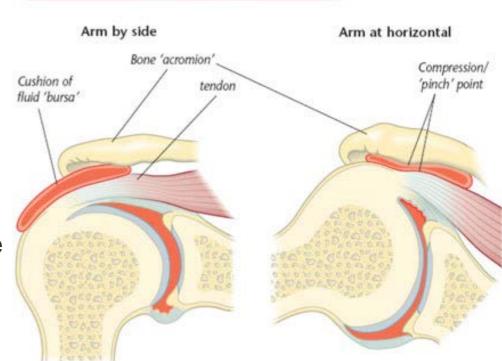
- Direct blow AC
- Injury when in abduction and external rotation instability
- Pain at night and overhead rotator cuff
- Neck involvement, and other upper extremity disorders, including elbow;
- Acute shoulder pain may be the first warning sign of serious disease.

AC Joint


- History
 - Pain radiates from superior shoulder to lateral neck and upper trapezius
 - Pain with reaching, especially across body
 - Pain with pushups, bench press and overhead lifting
 - Aching resting pain
 - Insidious onset
 - No change in shoulder pain with neck ROM

Rotator Cuff Syndrome

- History
 - Trauma
 - Fall on outstretched arm
 - Abduction in scapular plane =
 Supraspinatus +/- Infraspinatus
 - External rotation = subscapularis
 - Weakness > pain
 - Night pain
 - Overhead pain
- Litaker Study (2000)
 - Prognostic study 450 medical charts
 - Three factors best predicted rotator cuff syndrome
 - 1) weakness with external rotation
 - 2) Old age
 - 3) Night pain



Subacromial Impingement

History

- Pain that radiates from superolateral shoulder to lateral arm
- Pain with reaching
- No rest pain
- Usually insidious onset
- May be capped by an event or start some time after an event
- No change with neck ROM

Sub-acromial impingement - right shoulder

Glenohumeral Instability

History

- Subluxation popped back in w/o Tx
- Dislocation
- Direct of instability follows humeral head
- Anterior 90% (Abduction / External rotation)
- Abduction (inferior)
- Forward elevation (posterior)

Why Rethink?

Evidence on:

- Causation / natural history
- Examination findings
- Radiological findings
- Treatment outcomes

Causation

Causation – AMA Evidence

Occupational		Non Occupational	
RF	Evidence	RF	Evidence
Force and repetition	Some	Age	Very strong
Vibration	Insufficient	BMI	Strong
Highly repetitive work	Some	Gender	Insufficient
Foreceful work	Insufficient	Biopsychosocial	Strong
Awkward posture (sustained shoulder posture >60° Flx, Abd)	Strong	Diabetes	Some
Cold Environment	Insufficient	Dominant hand	Insufficient
Length of employment	Insufficient	Anatomy	Low risk
Keyboard activities	Insufficient	Comorbidities	Insufficient
Smoking	Low risk	Genetic	Insufficient

Post mortem studies suggest it is common by the fifth decade of life to find degenerative changes in the rotator cuff tendons, particularly thinning and fibrillation at the critical zone (hypovascular zone) of the cuff thought to be of physiological ageing

<35 years – instability or rotator cuff tendinopathy.

>35 years – rotator cuff tears, adhesive capsulitis, osteoarthritis.

Do you lift weights more than 10kg above shoulder level (compared with no) P value for overall affect < 0.01

Variable	OR	Lower 95%CI	Upper 95% CI
<15 minutes	1.44	0.99	2.09
15min – 2 hours	2.30	1.34	3.97
>2hrs	2.62	1.54	4.55

Beach et al. Factors affecting work related shoulder pain

Adjusted associations between baseline work-related physical exposures and a subsequent chronic shoulder disorder

Variable	OR (95% CI)	Men OR (95%CI)	Women (95%CI)
Lifting heavy loads	2.0 (1.2-3.4)	1.3 (0.6-2.9)	2.3 (1.1 – 5.1)
Working in awkward postures	1.8 (1.1-3.1)	1.1 (0.5-2.5)	2.0 (0.9 – 4.3)
Work involving vibration	2.5 (1.2-5.2)	2.3 (1.0-5.3)	3.0 (0.6 – 16.6)
Work involving repetitive movements	2.3 (1.3-4.1)	4.0 (1.8-8.6)	1.2 (0.5 – 2.8)
Work paced by machine	1.1 (0.4-2.8)	0.7 (0.2-3.4)	1.7 (0.5 – 6)
1-2 exposures	3.6 (1.9-6.8)	2.1 (0.8 – 5)	5.5 (2-15)
3-5 exposures	3.9 (1.8-8.5)	2.9 (1.1 – 7.9)	5.3 (1.4 – 19.8)

Examination

Pathology	Rotator Cuff/Impingement	AC joint	Instability	Bicep Tendon
Tests	 Neer Hawkins / Kennedy Empty Can Drop arm Lift Off Hornblower's 	 Painful arc Forced adduction 	 Anterior apprehension Posterior apprehension Anterior/poster ior draw Inferior instability 	 Speed Yergason's

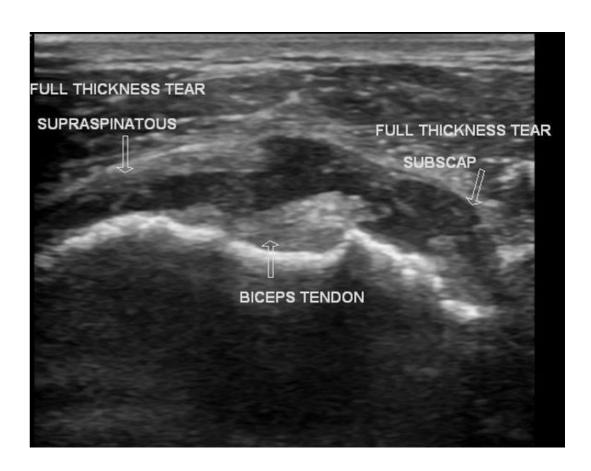
Rotator Cuff Pathology

Test	Sensitivity	Specificity
Subscapularis		
Lift off Test	12-33	90-99
Passive lift off Test	9-29	91-99
Belly Off Sign	8-27	93-100
Infraspinatus		
External rotation lag sign 0 degrees	3-18	96-100
External rotation lag sign 90 degrees	1-15	100
Hornblower's sign	8-26	93-100
Supraspinatus		
Empty can test	80-96	53-71
Full Can test	59-82	74-88
Drop Arm test	14-34	93-100
Neer Test	48-71	49-67
Hawkin's sign	53-76	38-57

Diagnostic Accuracy of Clinical Examination Findings for Identifying Subacromial Pain (+ve response LA injection standard)

Test	Sensitivity	Specificity
Lateral Shoulder pain	12-31	72-86
Anterior Shoulder pain	31-54	65-80
Night pain	46-69	42-59
Painful arc in abduction	43-67	30-48
Resisted Abd/ER pain	64-85	12-25
Resisted IR pain	38-62	44-61
No end range pain passive ER	29-52	77-90
Full passive ER	84-97	13-26
Hawkin's Kennedy	46-70	22-38
Drop Arm	6-22	84-94
Empty Can	76-93	9-21
External rotation lag sign	76-93	9-21
Neer Test	48-71	49-67

"There is insufficient evidence upon which to base selection of physical tests for shoulder impingements, and local lesions of bursa, tendon or labrum that may accompany impingement, in primary care. The large body of literature revealed extreme diversity in the performance and interpretation of tests, which hinders synthesis of the evidence and/or clinical applicability."


Cochrane review 2013

Radiology

What investigations to order?

What investigations to order?

- X-ray is under utilised
- Chronic pain
 - Diagnosis of degenerative changes
 - Upward shift of the head of the humerus
 - Sclerosis of the acromion
 - Calcifications of the tendons

Acute trauma

- Dislocation of the shoulder
- Fracture of proximal humerus
- Acute rupture of a RC tendon beyond the high position of the humerus

Prevalence

1995 – Milgrom

- Prevalence of tears increased markedly after 50 years of age
- Over 50% in aged 60-70yrs
- A natural correlate of ageing....often present with no symptoms

More recently – tears in 50% of 50yrs

Bursal thickening in 80 – 90% of population

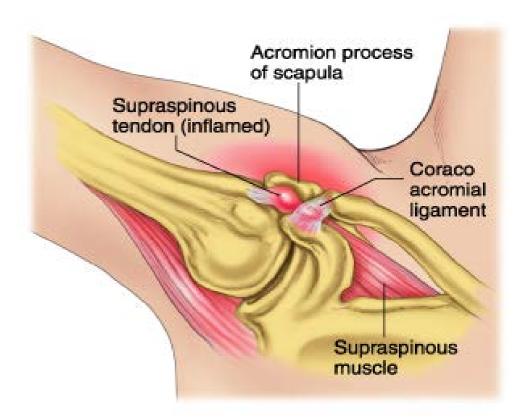
Radiolgicial "abnormality" in ~95 % of the population.

Does rotator cuff tear severity correlate with pain?

Anatomic features defining the severity of atraumatic rotator cuff tears are not associated with the pain level. Factors associated with pain are comorbidities and lower education level.

Impingement

Neer believed that impingement caused tears. It is more likely that rotator cuff dysfunction results in upward displacement of the humeral head and causes impingement....


Diagnostic Accuracy of Imaging Findings for Identifying Subacromial Pain (Cadogen, 2016)

Test	Positive Anesthetic response (n=66) %	Negative anesthetic response (n = 130) %
Ultrasound		
SAB pathology	70	69
Bursal bunching (acromion)	46	42
Supraspinatus tear (any)	27	21
Intrasubstance tear	14	11
PTT bursal surface	0	3
PTT articular surface	3	5
FTT	11	2
Supraspinatus tendinosis	14	14
Xray		
Any ACJ pathology	12	19

Treatment Subacromial Impingement

- Rx
 - Rehabilitation
 - Strengthen scapular stabilisers
 - Stretching pectoralis minor
 - Subacromial HCLA to improve tolerance for rehabilitation

Subacromial decompression / acromioplasty

Cochrane 2019 (and 2013)

Methods

Eight trials (1062 participants), Mean age 42-65

Majority compared arthoscopic subacromial decompression with arthroscopy only (placebo surgery)

Comparators could include the following

- Placebo surgery
- Non-operative treatments, including physical therapy, exercises, pharmacologic interventions such as NSAIDs and/or glucocorticoid or other injections
- Wait and see/no or delayed treatment

Cochrane Outcomes

Outcome	Risk with exercise	Risk with subacromial decompression	Findings
Pain (scale 0-10) 0 is no pain. Follow up 1 year post	The mean pain was 3.7 points	MD 1.01 better (1.6 better to 0.42 bet- ter)	Absolute difference 10% better (4%better to 16%better)
Functional outcome (scale 0-100 Follow-up: 1 year	The mean functional outcome was 58	MD 3.24 better (8.08 worse to 14.55 better)	Absolute difference 3% better (8%worse to 15% Better)
Global assessment of treatment success	598 per 1000	723 per 1000 (574 to 902)	Absolute difference 13% more reported success (2% fewer to 30%more)
Health-related quality of life (scale from: 0-1, 1 is perfect health) Follow-up: 1 year	The mean health-re- lated quality of life was 0.91	MD 0.01 better (0.01 worse to 0.03 bet- ter)	Absolute difference 1% better (1% worse to 3% better)

Findings

"Compared with placebo, high certainty evidence indicates Sub-acromial decompression provides no improvement in pain, shoulder function, or health-related quality of life up to one year, and probably no improvement in global success."

Guidelines

2013 UNSW: Clinical Practice Guidelines for the Management of Rotator Cuff Syndrome in the Workplace

Jeff

- 65M presents with R shoulder pain
- Job: Communications technician
- MOI: Lifting manhole cover at work 35kg with key
- Initial management BIBA to ED, x-ray NAD, opioids

Conclusion

- The shoulder is an inherently unstable joint that degenerates over time
- Clinical Examination Doesn't assure
 Dx
- Investigation Doesn't assure Dx
- Limited evidence and minimal science
- The presumed mechanism of impingement is not evidence based
- Propensity to use treatment to assure diagnosis leads to overtreatment and inappropriate treatment at times

Thoughts

Permanent Impairment

- Usually ROM
- Should be compared contralaterally
- Goniometer
- Consistent

(44)

References

- Hanchard NCA, Lenza M, Handoll HHG, Takwoingi Y. Physical tests for shoulder impingements and local lesions of bursa, tendon or labrum that may accompany impingement. Cochrane Database of Systematic Reviews 2013, Issue 4.
- Karjalainen TV, Jain NB, Page CM, Lähdeoja TA, Johnston RV, Salamh P, Kavaja L, Ardern CL, Agarwal A, Vandvik PO, Buchbinder R. Subacromial decompression surgery for rotator cuff disease. Cochrane Database of Systematic Reviews 2019, Issue 1.
- Cadogen A. Diagnostic Accuracy of Clinical Examination and Imaging Findings for Identifying Subacromial Pain. PLoS Onev.11(12); 2016
- Jain, N. et al. The Diagnostic Accuracy of Special Tests for Rotator Cuff Tear: The ROW Cohort Study American Journal Phys Med Rehabil. 2017 March; 96(3): 176–183.
- Engeretsen et al. Predictors of Shoulder Pain and Disability Index (SPADI) and work status after 1
 year in patients with subacromial shoulder pain, BMC musculoskeletal Disorders 2010, 11:218
- Beach et al. Factors affecting work-related shoulder pain. Occupational Medicine 2012;62;451-454
- Miranda H et al. Physical work and chronic shoulder disorder. Results of a prospective population based study. 2008;67:218-223
- Svendsen, S. W. Work related shoulder disorders; quantitative exposure response relations with reference to arm posture. Occup Environ Med 2004;61:844-853
- Liddle, D. Shoulder pain physical examination and approach to differential diagnosis. Vanderbilt University.
- Liu TC, Leung N, Edwards L, Ring D, Bernacki E, Tonn MD. Patients Older Than 40 Years With Unilateral Occupational Claims for New Shoulder and Knee Symptoms Have Bilateral MRI Changes. Clin Orthop Relat Res. 2017;475(10):2360–2365. doi:10.1007/s11999-017-5401-y
- Milgrom C, Schaffler M, Gilbert S, van Holsbeeck M. Rotator-cuff changes in asymptomatic adults.
 The effect of age, hand dominance and gender. J Bone Joint Surg Br. 1995;77:296–8.

THANK YOU

www.LIMEml.com.au